期待値の計算方法
ステップバイステップで期待値を計算する
期待値の計算方法
簡単に書くと
期待値 = (値1 × その確率1)+ (値2 × その確率2)+ ... + (値n × その確率n)
詳しく書くと
期待値の計算は、すべての可能な結果について、その値と確率を掛け合わせて合計するという手順で行います。
公式:
計算手順の例
「25%の確率で1,000円、50%の確率で500円、25%の確率で0円」というゲームの期待値を計算します。
計算手順
ステップ1: データの整理 値1: 1,000円、確率1: 0.25 値2: 500円、確率2: 0.50 値3: 0円、確率3: 0.25
ステップ2: 各値の加重値を計算 1000 × 0.25 = 250 500 × 0.50 = 250 0 × 0.25 = 0
ステップ3: すべての加重値を足す
例1: スクラッチくじ
100円のスクラッチくじの期待値を計算します。
| 結果 | 賞金 | 確率 |
|---|---|---|
| はずれ | 0円 | 70% |
| 100円当選 | 100円 | 20% |
| 500円当選 | 500円 | 8% |
| 1,000円当選 | 1,000円 | 2% |
計算:
結論: このくじの期待値は80円です。100円で買ったくじの期待値が80円なので、平均的には1回買うたびに20円の損失が期待されます。
重要なポイント
- ●
確率の合計が100%か確認 - すべての確率の合計は1になる必要があります
- ●
単位を統一する - 値と確率の単位が一致していることを確認
- ●
すべてのケースを含める - 起こりうるすべての値と確率を含める
- ●
正確な確率の取得 - 確率が不正確だと期待値も不正確になります
練習問題
問題:
以下のゲームの期待値を計算してください。 • 40%の確率で200円 • 35%の確率で100円 • 25%の確率で0円
E[X] = 200×0.4 + 100×0.35 + 0×0.25 E[X] = 80 + 35 + 0 = 115円
このレッスンのクイズに挑戦!
期待値の計算方法の理解を深めるために、章末クイズに挑戦しましょう。
準備中